A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
The monograph summarizes and analyzes the current state of development of computer and mathematical simulation and modeling, the automation of management processes, the use of information technologies in education, the design of information systems and software complexes, the development of computer telecommunication networks and technologies most areas that are united by the term Industry 4.0
translated by 谷歌翻译
随着卷积神经网络(CNN)在物体识别方面变得更加准确,它们的表示与灵长类动物的视觉系统越来越相似。这一发现激发了我们和其他研究人员询问该含义是否也以另一种方式运行:如果CNN表示更像大脑,网络会变得更加准确吗?以前解决这个问题的尝试显示出非常适中的准确性,部分原因是正则化方法的局限性。为了克服这些局限性,我们开发了一种新的CNN神经数据正常化程序,该数据正常化程序使用深层规范相关分析(DCCA)来优化CNN图像表示与猴子视觉皮层的相似之处。使用这种新的神经数据正常化程序,与先前的最新神经数据正则化器相比,我们看到分类准确性和少级精度的性能提高得多。这些网络对对抗性攻击也比未注册的攻击更强大。这些结果共同证实,神经数据正则化可以提高CNN的性能,并引入了一种获得更大性能提升的新方法。
translated by 谷歌翻译
最近的研究表明,与哺乳动物视觉皮层的光谱特性相匹配的人工神经网络(ANN) - 即,神经活动的协方差矩阵的$ \ sim 1/n $特征 - 实现更高的对象识别性能和稳健性的性能对抗攻击比没有的攻击。然而,据我们所知,以前的工作没有系统地探讨修改ANN光谱属性如何影响性能。为了填补这一空白,我们对频谱正规化程序进行了系统的搜索,迫使Ann的特征范围遵循$ 1/n^\ alpha $ power Laws Laws,带有不同的指数$ \ alpha $。我们发现,较大的力量(大约2--3)可以提高验证精度,并对对浓缩网络的对抗性攻击具有更大的鲁棒性。这个令人惊讶的发现适用于浅网和深网,它推翻了这样的观念,即脑状光谱(对应于$ \ alpha \ sim 1 $)始终优化ANN性能和/或稳健性。对于卷积网络,最佳$ \ alpha $值取决于任务复杂性和评估度量:较低$ \ alpha $值优化验证精度和对对抗性攻击的稳健性,用于执行简单对象识别任务的网络(对手稿数字的MNIST图像进行分类) ;对于更复杂的任务(对CIFAR-10自然图像进行分类),我们发现较低的$ \ alpha $值优化验证精度,而较高的$ \ alpha $值优化的对抗性稳健性。这些结果具有两个主要含义。首先,他们对脑般的光谱属性($ \ alpha \ sim 1 $)\ emph {始终}优化ANN性能的观念提出了怀疑。其次,它们证明了微调光谱正规化器优化所选设计度量的潜力,即准确性和/或鲁棒性。
translated by 谷歌翻译
公平的机器学习研究人员(ML)围绕几个公平标准结合,这些标准为ML模型公平提供了正式的定义。但是,这些标准有一些严重的局限性。我们确定了这些正式公平标准的四个主要缺点,并旨在通过扩展性能预测以包含分配强大的目标来帮助解决这些问题。
translated by 谷歌翻译